loading...
علوم تجربی مدرس کوهبنان
محمدحسین آلطه بازدید : 310 یکشنبه 28 اردیبهشت 1393 نظرات (0)

 

در باره انرژی هسته ای بیشتر بدانیم

 انرژی هسته ای

 استفاده اصلی از انرژی هسته‌ای، تولید انرژی الكتریسته است. این راهی ساده و كارآمد برای جوشاندن آب و ایجاد بخار برای راه‌اندازی توربین‌های مولد است. بدون راكتورهای موجود در نیروگاه‌های هسته‌ای، این نیروگاه‌ها شبیه دیگر نیروگاه‌ها زغال‌سنگی و سوختی می‌شود. انرژی هسته‌ای بهترین كاربرد برای تولید مقیاس متوسط یا بزرگی از انرژی الكتریكی به‌طور مداوم است. سوخت اینگونه ایستگاه‌ها را اوانیوم تشكیل می‌دهد.

چرخه سوخت هسته‌ای تعدادی عملیات صنعتی است كه تولید الكتریسته را با اورانیوم در راكتورهای هسته‌ای ممكن می‌كند.
اورانیوم عنصری نسبتاً معمولی و عادی است كه در تمام دنیا یافت می‌شود. این عنصر به‌صورت معدنی در بعضی از كشورها وجود دارد كه حتماً باید قبل از مصرف به صورت سوخت در راكتورهای هسته‌ای، فرآوری شود.
الكتریسته با استفاده از گرمای تولید شده در راكتورهای هسته‌ای و با ایجاد بخار برای به‌كار انداختن توربین‌هایی كه به مولد متصل‌اند تولید می‌شود.
سوختی كه از راكتور خارج شده، بعداز این كه به پایان عمر مفید خود رسید می‌تواند به عنوان سوختی جدید استفاده شود.
فعالیت‌های مختلفی كه با تولید الكتریسیته از واكنش‌های هسته‌ای همراهند مرتبط به چرخه‌ سوخت هسته‌ای هستند. چرخه سوختی انرژی هسته‌ای با اورانیوم آغاز می‌شود و با انهدام پسمانده‌های هسته‌ای پایان می‌یابد. دوبار عمل‌آوری سوخت‌های خرج شده به مرحله‌های چرخه سوخت هسته‌ای شكلی صحیح می‌دهد.

اورانیوم
 

اورانیوم فلزی رادیواكتیو و پرتوزاست كه در سراسر پوسته سخت زمین موجود است. این فلز حدوداً 500 بار از طلا فراوان‌تر و به اندازه قوطی حلبی معمولی و عادی است. اورانیوم اكنون به اندازه‌ای در صخره‌ها و خاك و زمین وجود دارد كه در آب رودخانه‌ها، دریاها و اقیانوس‌ها موجود است. برای مثال این فلز با غلظتی در حدود 4 قسمت در هر میلیون (ppm4) در گرانیت وجود دارد كه 60 درصد از كره زمین را شامل می‌شود، در كودها با غلظتی بالغ بر ppm400 و در ته‌مانده زغال‌سنگ با غلظتی بیش از ppm100 موجود است. اكثر رادیو اكتیویته مربوط به اورانیوم در طبیعت در حقیقت ناشی از معدن‌های دیگری است كه با عملیات رادیواكتیو به وجود آمده‌اند و در هنگام استخراج از معدن و آسیاب كردن به جا مانده‌اند.
چند منطقه در سراسر دنیا وجود دارد كه غلظت اورانیوم موجود در آنها به قدر كافی است كه استخراج آن برای استفاده از نظر اقتصادی به صرفه و امكان‌پذیر است. این نوع مواد غلیظ، سنگ معدن یا كانه نامیده می‌شوند.
- چرخه سوخت هسته‌ای (شكل هندسی) (عكس)

استخراج اورانیوم
 

هر دو نوع حفاری و تكنیك‌های موقعیتی برای كشف كردن اورانیوم به كار می‌روند، حفاری ممكن است به صورت زیرزمینی یا چال‌های باز و روی زمین انجام شود.
در كل، حفاری‌های روزمینی در جاهایی استفاده می‌شود كه ذخیره معدنی نزدیك به سطح زمین و حفاری‌های زیرزمینی برای ذخیره‌های معدنی عمیق‌تر به كار می‌رود. به‌طور نمونه برای حفاری روزمینی بیشتر از 120 متر عمق، نیاز به گودال‌های بزرگی بر سطح زمین است؛ اندازه گودال‌ها باید بزرگتر از اندازه ذخیره معدنی باشد تا زمانی كه دیواره‌های گودال محكم شوند تا مانع ریزش آنها شود. در نتیجه، تعداد موادی كه باید به بیرون از معدن انتقال داده شود تا به كانه دسترسی پیدا كند زیاد است.
حفاری‌های زیرزمینی دارای خرابی و اخلال‌های كمتری در سطح زمین هستند و تعداد موادی كه باید برای دسترسی به سنگ معدن یا كانه به بیرون از معدن انتقال داده شوند به‌طور قابل ملاحظه‌ای كمتر از حفاری نوع روزمینی است.
مقدار زیادی از اورانیوم جهانی از (ISL) (In Sitaleding) می‌آید. جایی كه آب‌های اكسیژنه زیرزمینی در معدن‌های كانه‌ای پرمنفذ به گردش می‌افتند تا اورانیوم موجود در معدن را در خود حل كنند و آن را به سطح زمین آورند. (ISL) شاید با اسید رقیق یا با محلول‌های قلیایی همراه باشد تا اورانیوم را محلول نگهدارد، سپس اورانیوم در كارخانه‌های آسیاب‌سازی اورانیوم، از محلول خود جدا می‌شود.
در نتیجه انتخاب روش حفاری برای ته‌نشین كردن اورانیوم بستگی به جنس دیواره معدن كانه سنگ، امنیت و ملاحظات اقتصادی دارد.
در غالب معدن‌های زیرزمینی اورانیوم، پیشگیری‌های مخصوصی كه شامل افزایش تهویه هوا می‌شود، لازم است تا از پرتوافشانی جلوگیری شود.

آسیاب كردن اورانیوم
 

محل آسیاب كردن معمولاً به معدن استخراج اورانیوم نزدیك است. بیشتر امكانات استخراجی شامل یك آسیاب می‌شود. هرچه جایی كه معدن‌ها قرار دارند به هم نزدیك‌تر باشند یك آسیاب می‌تواند عمل آسیاب‌سازی چند معدن را انجام دهد. عمل آسیاب‌سازی اكسید اورانیوم غلیظی تولید می‌كند كه از آسیاب حمل می‌شود. گاهی اوقات به این اكسیدها كیك زرد می‌گویند كه شامل 80 درصد اورانیوم می‌باشد. سنگ معدن اصل شاید دارای چیزی در حدود 1/0 درصد اورانیوم باشد.
در یك آسیاب، اورانیوم با عمل سنگ‌شویی از سنگ‌های معدنی خرد شده جدا می‌شود كه یا با اسید قوی و یا با محلول قلیایی قوی حل می‌شود و به صورت محلول در می‌آید. سپس اورانیوم با ته‌نشین كردن از محلول جدا می‌شود و بعداز خشك كردن و معمولاً حرارت دادن به صورت اشباع شده و غلیظ در استوانه‌های 200 لیتری بسته‌بندی می‌شود.
باقیمانده سنگ معدن كه بیشتر شامل مواد پرتوزا و سنگ معدن می‌شود در محلی معین به دور از محیط معدن در امكانات مهندسی نگهداری می‌شود. (معمولاً در گودال‌هایی روی زمین).
پس‌مانده‌های دارای مواد رادیواكتیو عمری طولانی دارند و غلظت آنها كم خاصیتی سمی دارند. هرچند مقدار كلی عناصر پرتوزا كمتر از سنگ معدن اصلی است و نیمه عمر آنها كوتاه خواهد بود اما این مواد باید از محیط زیست دور بمانند.

تبدیل و تغییر
 

محلول آسیاب شده اورانیوم مستقیماً قابل استفاده به‌عنوان سوخت در راكتورهای هسته‌ای نیست. پردازش اضافی به غنی‌سازی اورانیوم مربوط است كه برای تمام راكتورها لازم است.
این عمل اورانیوم را به نوع گازی تبدیل می‌كند و راه به‌دست آوردن آن تبدیل كردن به هگزا فلورید (Hexa Fluoride) است كه در دمای نسبتاً پایین گاز است.
در وسیله‌ای تبدیل‌گر، اورانیوم به اورانیوم دی‌اكسید تبدیل می‌شود كه در راكتورهایی كه نیاز به اورانیوم غنی شده ندارند استفاده می‌شود.
بیشتر آنها بعداز آن كه به هگزافلورید تبدیل شدند برای غنی‌سازی در كارخانه آماده هستند و در كانتینرهایی كه از جنس فلز مقاوم و محكم است حمل می‌شوند. خطر اصلی این طبقه از چرخه سوختی اثر هیدروژن فلورید (Hydrogen Fluoride) است.

مزایایی استفاده از انژری هسته ای
 

انرژی در جهان امروز یك عامل راهبردی است و اغلب كشورهای جهان به خصوص آنها كه به دنبال اعمال اراده و قدرت خود بر دیگر كشورها می باشند از همین دریچه به مقوله انرژی می نگرند.
سوخت های فسیلی مانند ذغال سنگ، مقدار قابل توجهی از انواع آلاینده ها همانند تركیبات كربن و گوگرد را وارد محیط زیست می سازند كه برای سلامت انسان زیانبار است. از سوی دیگر با توجه به افزایش مصرف برق و پایان پذیر بودن منابع سوخت فسیلی به نظر می رسد استفاده از انرژی هسته ای بهترین گزینه موجود باشد.
ایران ۳۰ هزار مگاوات نیروگاه دارد و در ده سال آینده، احتمالاً به۶۰ هزار مگاوات خواهد رسید. بالا رفتن حجم تولید گازهای گلخانه ای، هزینه های اجتماعی خاصی را ایجاد می كند كه بالطبع باید جلوی تولید گازهای گلخانه ای را در نیروگاههای فسیلی گرفت،
در حال حاضر روسیه ۸ میلیون بشكه نفت در روز تولید و حدود ۵ میلیون از آن را صادر می كند. ۳۰ نیروگاه هسته ای دارد و به سرعت هم به نیروگاههای خود اضافه می كند، در حالی كه اولین كشور در ذخایر گازی است و جمعیت آن هم تنها كمی بیشتر از دو برابر ماست.
در این شرایط آمریكا هم ۱۰۵ نیروگاه هسته ای دارد، لذا فقط معیارهای اقتصادی هم مطرح نیست و معیارهای مختلف فن آوری تأثیر گذار خواهد بود. در واقع تكنولوژی هسته ای، میعاد گاه تكنولوژی های دیگر است. مثل صنعت خودرو كه اگر در یك كشور رونق خوبی داشته باشد، تقریباً بخش عمده ای از تكنولوژی را جلو می برد، چرا كه بیشتر علوم و تكنولوژی ها مثل مكانیك، شیمی، مواد، برق و...
صنعت غنی سازی هم عمر كمی ندارد و دست كم ۴۰ سال است كه این كار شروع شده است.
چون در غنی سازی اورانیوم جهت استفاده در راكتورهای هسته ای از علوم مختلف مهندسی، مكانیك، شیمی و... با نهایت دقت و قدرت استفاده می شود. به طور كلی تعریف جدید مهندسی براساس میزان دقت است و كشوری پیشرفته نامیده می شود كه میزان خطای مهندسی آن كم باشد.
برای رسیدن به استقلال واقعی، باید به سمت تولید فن آوری و علم رفت. البته این روند بالطبع هزینه دارد. همه جای دنیا هم، این گونه است. به هر حال هزینه رسیدن به تكنولوژی هسته ای با این همه عظمت، كار و فعالیت همه جانبه متخصصین ایرانی و استفاده از تجربه كشورهای دارنده این صنعت را طلب می كند.
مقوله انرژی برای كشورهای سلطه طلب، نقش موتور محركه اقتصاد و تولید ملی و تعیین كننده جایگاه آنها در نظام سرمایه داری جهان را دارد و همچنین تضمین كننده منافع و امنیت ملی آنها است، برای كشور ما نیز چگونگی سامان دهی به سیاستهای بخش انرژی، نقش كلیدی در فرآیند تحولات سیاسی، اجتماعی و اقتصادی را داراست و لذا ضروری است كه برای انرژی و بخصوص نفت و گاز و به دنبال اینها انرژی هسته ای، برنامه و استراتژی اندیشیده و متناسب با شرایط واقعی موجود داخلی و جهانی داشته باشیم.
دغدغه اصلی جهان عادت كرده به مصرف انرژی، در دو دهه آینده، تولید انرژی و ساخت نیروگاه اتمی به عنوان تنها راه خروج از بحران انرژی در دهه های آینده است. در این بین از آن جا كه ساخت یك نیروگاه اتمی اغلب علوم و فنون را به كار می گیرد،
نیروگاه برق اتمی، اقتصادی ترین نیروگاهی است كه امروز در دنیا احداث می شود.
انرژی هسته‌ای در زمینه‌های مختلف پزشکی، موزه‌ها، شناسایی کوچکترین شکاف یا ناخالصی در مواد و موتور هواپیما و اتومبیل، پیشگیری از فساد زودرس محصولات کشاورزی و رشد گیاهان کاربرد دارد.
علم طب شناخت خود را جهت درمان و پیشگیری از بیماری اشعه وسعت داد و همزمان از اشعه به صور مختلف در تشخیص و درمان بیماری‌ها از جمله سرطان استفاده کرد. رادیوتراپی جایگاه ویژه در درمان سرطان‌ها پیدا کرد و طب هسته به عنوان یک رشته تخصصی در پزشکی روز وارد شد

پزشکی هسته ای :
 

تصویر برداری در پزشکی هسته ای 
توموگرافی تابش پوزیترون (PET)
(SPECT) توموروگرافی با استفاده از تابش تک فوتون
تصویر برداری قلبی عروقی
اسکن استخوان

پزشکی هسته ای و درمان بیماریها
 

یكی از روشهای تشخیصی و درمانی ارزشمند در طب، پزشكی هسته ای می باشد. كه تبلور آن از ابتدا تا كنون تلفیقی از كشفیات مهم تاریخی بوده است
اولین استفاده كلینیكی مواد رادیواكتیو، در سال 1937 جهت درمان لوسمی در دانشگاه كالیفرنیا در بركلی بود. بعــــــد از آن در 1946 با استــــــفاده از این مواد توانستند در یك بیمار مبتلا به سرطان تیروئـــــید از پیشرفت این بیماری جلوگیری كنند. 
در دهه 1970 توانستند با جاروب نمودن از ارگانهای دیگر بدن مانند كبد و طحال، تومورهای مغزی و مجاری گوارشی تصاویری را تهیه نمایند.
در دهه 1980 از رادیو داروها جهت تشخیص بیماری های قلبی استفاده نمودند و هم اكنون نیز با ضریب اطمینان بسیار بالایی از پزشكی هسته ای در درمان و تشخیص و پیگیری روند درمان بیماریها استفاده می گردد.
انرژی هسته ای کاربرداری زیاد در پزشکی در علوم و صنعت و کشاورزی و... دارد. لازم به ذکر است انرژی هسته ای به تمامی انرژی های دیگر قابل تبدیل است ولی هیچ انرژی به انرژی هسته ای تبدیل نمی شود .موارد زیادی از کاربردهای انرژی هسته ای در زیر آورده می شود . 

نیروگاه هسته ای (Nuclear Power Station) :
 

یک نیروگاه الکتریکی که از انرژی تولیدی شکست هسته اتم اورانیوم یا پلوتونیم استفاده می کند. چون شکست سوخت هسته ای اساساً گرما تولید می کند از گرمای تولید شده رآکتور های هسته ای برای تولید بخار استفاده می شود از بخار تولید شده برای به حرکت در آوردن توربین ها و ژنراتور ها که نهایتاً برای تولید برق استفاده می شود .
پیل هسته ای یا اتمی دستگاه تبدیل کننده انرژی اتمی به جریان برق مستقیم است ساده ترین پیل ها شامل دو صفحه است. یک پخش کننده بتای خالص مثل استرنیوم 90 و یک هادی مثل سیلسیوم.

کاربردهای پزشکی:
 

در پزشکی تشعشعات هسته ای کاربردهای زیادی دارند که اهم آنها عبارتند از: 
• رادیو گرافی 
• گامااسکن 
• استرلیزه کردن هسته ای و میکروب زدایی وسایل پزشکی با پرتو های هسته ای 
• رادیو بیولوژی 
کاربرد انرژی هسته ای در بخش دامپزشکی و دامپروری : 
تکنیکهای هسته ای در حوزه دامپزشکی موارد مصرفی چون تشخیص و درمان بیماریهای دامی ، تولید مثل دام ، اصلاح نژاد و دام ، تغذیه ، بهداشت و ایمن سازی محصولات دامی و خوراک دام دارد
کاربرد انرژی هسته ای در دسترسی به منابع آب : 
تکنیکهای هسته ای برای شناسایی حوزه های آب زیر زمینی هدایت آبهای سطحی و زیر زمینی ، کشف و کنترل نشت و ایمنی سدها مورد استفاده قرار میگیرد. در شیرین کردن آبهای شور نیز انرژی هستهای کاربرد دارد. 
کاربردهای کشاورزی: 
تشعشعات هسته ای کاربرد های زیادی در کشاورزی دارد که مهم ترین آنها عبارتست از: 
• موتاسیون هسته ای ژن ها در کشاورزی 
• کنترل حشرات با تشعشعات هسته ای 
• جلوگیری از جوانه زدن سیب زمینی با اشعه گاما 
• انبار کردن میوه ها 
• دیرینه شناسی )باستان شناسی) و صخره شناسی )زمین شناسی) که عمر یابی صخره ها با C14 در باستان شناسی خیلی مشهور است
کاربردهای صنعتی: 
در صنعت کاربردها ی زیادی دارد از جمله مهمترین آنها عبارتند از: 
• نشت یابی با اشعه 
• دبی سنجی پرتویی(سنجش شدت تشعشعات ، نور و فیزیک امواج) 
• سنجش پرتویی میزان سائیدگی قطعات در حین کار 
• سنجش پرتویی میزان خوردگی قطعات 
• چگالی سنج موادمعدنی با اشعه 
• کشف عناصر نایاب در معادن 
تکنیکهای هسته ای بر کشف مینهای ضد نفر نیز کاربرد دارد. بنابرین ، دانش هسته ای با این قدرت و وسعتی که دارد، هر روز بر دامنه استفاده از فناوری هسته ای و بویژه انرژی هسته ای افزوده می شود. کاربرد انرژی در بخشهای مختلف به گونهای است که اگر کشوری فناوری هسته ای را نهادینه نماید، در بسیاری از حوزه‌های علمی و صنعتی ، ارتقای پیدا می کند و مسیر توسعه را با سرعت طی می نماید.

انرژی هسته ای در پزشکی هسته ای و امور بهداشتی: 
 

در کشورهای پیشرفته صنعتی ، از انرژی هسته ای به صورت گسترده در پزشکی استفاده می گردد. با توجه به شیوع برخی از بیماریها از جمله سرطان ، ضرورت تقویت طب هسته ای در کشورهای در حال توسعه ، هر روز بیشتر می شود. موارد زیر از مصادیق تکنیکهای هسته ای در علم پزشکی است: 
تهیه و تولید کیتهای رادیو دارویی جهت مراکز پزشکی هسته ای 
تهیه و تولید رادیو دارویی جهت تشخیص بیماری تیرویید و درمان آنها 
تهیه و تولید کیتهای هورمونی 
تشخیص و درمان سرطان پروستات 
تشخیص سرطان کولون ، روده کوچک و برخی سرطانهای سینه 
تشخیص تومورهای سرطانی و بررسی تومورهای مغزی ، سینه و ناراحتی وریدی 
تصویر برداری بیماریهای قلبی ، تشخیص عفونتها و التهاب مفصلی ، آمبولی و لختههای وریدی 
موارد دیگری چون تشخیص کم خونی ، کنترل رادیو داروهای خوراکی و تزریقی 

کاربرد انرژی هسته ای در تولید برق :
 

یکی از مهم ترین موارد استفاده صلح آمیز از انرژی هسته ای ، تولید برق از طریق نیروگاههای اتمی است. با توم به پایان پذیر بودن منابع فسیلی و روند رو به رشد توسعه اجتماعی و اقتصادی ، استفاده از انرژی هسته ای برای تولید برق را امری ضروری و لازم می دانند و ساخت چند نیروگاه اتمی را دنبال مینماید. 
ایران هر ساله حدودا به هفت هزار مگاوات برق در سال نیاز دارد. نیروگاه اتمی بوشهر 1000 مگاوات برق را در صورت راه اندازی تامین می نماید. و احداث نیروگاههای دیگر برای رفع این نیازی ضروری است. برای تولید میزان برق حدود 190 میلیون بشکه نفت خام مصرف می شود. که در صورت تامین از طریق انرژی هسته ای سالیانه 5 میلیارد دلار صرفه جویی خواهد شد. 

برتری انرژی هسته ای بر سایر انرژیها: 
 

علاوه بر صرفه اقتصادی دلایل زیر استفاده از انرژی هسته ای را ضروری مینماید. منابع فسیلی محدود بوده و متعلق به نسلهای آتی میباشد. استفاده از نفت خام در صنایع تبدیل پتروشیمی ارزش بیشتری دارد. تولید برق از طریق نیروگاه اتمی ، آلودگی نیروگاههای کنونی را ندارد. تولید هفت هزار مگاوات با مصرف 190 میلیون شبکه نفت خام ، هزارتن دیاکسید کربن ، 150 تن ذرات معلق در هوا ، 130 تن گوگرد و 50 تن اکسید نیتروژن را در محیط زیست پراکنده می کند، در حالی که نیروگاه اتمی چنین آلودگی را ندارد.
ساختار نیروگاه های اتمی جهان و نیز شرح مختصری درباره طرز غنی سازی اورانیوم
مطالبی در مورد ساختار نیروگاه های اتمی جهان و نیز شرح مختصری درباره طرز غنی سازی اورانیوم و یا سنتز عنصر پلوتونیوم :
برحسب نظریه اتمی عنصر عبارت است از یك جسم خالص ساده كه با روش های شیمیایی نمی توان آن را تفكیك كرد. از تركیب عناصر با یكدیگر اجسام مركب به وجود می آیند. تعداد عناصر شناخته شده در طبیعت حدود ۹۲ عنصر است.
هیدروژن اولین و ساده ترین عنصر و پس از آن هلیم، كربن، ازت، اكسیژن و... فلزات روی، مس، آهن، نیكل و... و بالاخره آخرین عنصر طبیعی به شماره ۹۲، عنصر اورانیوم است. بشر توانسته است به طور مصنوعی و به كمك واكنش های هسته ای در راكتورهای اتمی و یا به كمك شتاب دهنده های قوی بیش از ۲۰ عنصر دیگر بسازد كه تمام آن ها ناپایدارند و عمر كوتاه دارند و به سرعت با انتشار پرتوهایی تخریب می شوند. اتم های یك عنصر از اجتماع ذرات بنیادی به نام پرتون، نوترون و الكترون تشكیل یافته اند. پروتون بار مثبت و الكترون بار منفی و نوترون فاقد بار است.
تعداد پروتون ها نام و محل قرار گرفتن عنصر را در جدول تناوبی (جدول مندلیف) مشخص می كند. اتم هیدروژن یك پروتون دارد و در خانه شماره ۱ جدول و اتم هلیم در خانه شماره ۲، اتم سدیم در خانه شماره ۱۱ و... و اتم اورانیوم در خانه شماره ۹۲ قرار دارد. یعنی دارای ۹۲ پروتون است.

ایزوتوپ های اورانیوم
 

تعداد نوترون ها در اتم های مختلف یك عنصر همواره یكسان نیست كه برای مشخص كردن آنها از كلمه ایزوتوپ استفاده می شود.
بنابراین اتم های مختلف یك عنصر را ایزوتوپ می گویند. مثلاً عنصر هیدروژن سه ایزوتوپ دارد: هیدروژن معمولی كه فقط یك پروتون دارد و فاقد نوترون است. هیدروژن سنگین یك پروتون و یك نوترون دارد كه به آن دوتریم گویند و نهایتاً تریتیم كه از دو نوترون و یك پروتون تشكیل شده و ناپایدار است و طی زمان تجزیه می شود.
ایزوتوپ سنگین هیدروژن یعنی دوتریم در نیروگاه های اتمی كاربرد دارد و از الكترولیز آب به دست می آید. در جنگ دوم جهانی آلمانی ها برای ساختن نیروگاه اتمی و تهیه بمب اتمی در سوئد و نروژ مقادیر بسیار زیادی آب سنگین تهیه كرده بودند كه انگلیسی ها متوجه منظور آلمانی ها شده و مخازن و دستگاه های الكترولیز آنها را نابود كردند.
غالب عناصر ایزوتوپ دارند از آن جمله عنصر اورانیوم، چهار ایزوتوپ دارد كه فقط دو ایزوتوپ آن به علت داشتن نیمه عمر نسبتاً بالا در طبیعت و در سنگ معدن یافت می شوند. این دو ایزوتوپ عبارتند از اورانیوم ۲۳۵ و اورانیوم ۲۳۸ كه در هر دو ۹۲ پروتون وجود دارد ولی اولی ۱۴۳ و دومی ۱۴۶ نوترون دارد. اختلاف این دو فقط وجود ۳ نوترون اضافی در ایزوتوپ سنگین است ولی از نظر خواص شیمیایی این دو ایزوتوپ كاملاً یكسان هستند و برای جداسازی آنها از یكدیگر حتماً باید از خواص فیزیكی آنها یعنی اختلاف جرم ایزوتوپ ها استفاده كرد. ایزوتوپ اورانیوم ۲۳۵ شكست پذیر است و در نیروگاه های اتمی از این خاصیت استفاده می شود و حرارت ایجاد شده در اثر این شكست را تبدیل به انرژی الكتریكی می نمایند. در واقع ورود یك نوترون به درون هسته این اتم سبب شكست آن شده و به ازای هر اتم شكسته شده ۲۰۰ میلیون الكترون ولت انرژی و دو تكه شكست و تعدادی نوترون حاصل می شود كه می توانند اتم های دیگر را بشكنند. بنابراین در برخی از نیروگاه ها ترجیح می دهند تا حدی این ایزوتوپ را در مخلوط طبیعی دو ایزوتوپ غنی كنند و بدین ترتیب مسئله غنی سازی اورانیوم مطرح می شود.

ساختار نیروگاه اتمی
 

به طور خلاصه چگونگی كاركرد نیروگاه های اتمی را بیان كرده و ساختمان درونی آنها را مورد بررسی قرار می دهیم.
طی سال های گذشته اغلب كشورها به استفاده از این نوع انرژی هسته ای تمایل داشتند و حتی دولت ایران ۱۵ نیروگاه اتمی به كشورهای آمریكا، فرانسه و آلمان سفارش داده بود. ولی خوشبختانه بعد از وقوع دو حادثه مهم تری میل آیلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبیل (Tchernobyl) در روسیه در ۲۶ آوریل ۱۹۸۶، نظر افكار عمومی نسبت به كاربرد اتم برای تولید انرژی تغییر كرد و ترس و وحشت از جنگ اتمی و به خصوص امكان تهیه بمب اتمی در جهان سوم، كشورهای غربی را موقتاً مجبور به تجدیدنظر در برنامه های اتمی خود كرد.
نیروگاه اتمی در واقع یك بمب اتمی است كه به كمك میله های مهاركننده و خروج دمای درونی به وسیله مواد خنك كننده مثل آب و گاز، تحت كنترل درآمده است. اگر روزی این میله ها و یا پمپ های انتقال دهنده مواد خنك كننده وظیفه خود را درست انجام ندهند، سوانح متعددی به وجود می آید و حتی ممكن است نیروگاه نیز منفجر شود، مانند فاجعه نیروگاه چرنوبیل شوروی. یك نیروگاه اتمی متشكل از مواد مختلفی است كه همه آنها نقش اساسی و مهم در تعادل و ادامه حیات آن را دارند. این مواد عبارت اند از:
۱ _ ماده سوخت متشكل از اورانیوم طبیعی، اورانیوم غنی شده، اورانیوم و پلوتونیم است.
عمل سوختن اورانیوم در داخل نیروگاه اتمی متفاوت از سوختن زغال یا هر نوع سوخت فسیلی دیگر است. در این پدیده با ورود یك نوترون كم انرژی به داخل هسته ایزوتوپ اورانیوم ۲۳۵ عمل شكست انجام می گیرد و انرژی فراوانی تولید می كند. بعد از ورود نوترون به درون هسته اتم، ناپایداری در هسته به وجود آمده و بعد از لحظه بسیار كوتاهی هسته اتم شكسته شده و تبدیل به دوتكه شكست و تعدادی نوترون می شود. تعداد متوسط نوترون ها به ازای هر ۱۰۰ اتم شكسته شده ۲۴۷ عدد است و این نوترون ها اتم های دیگر را می شكنند و اگر كنترلی در مهار كردن تعداد آنها نباشد واكنش شكست در داخل توده اورانیوم به صورت زنجیره ای انجام می شود كه در زمانی بسیار كوتاه منجر به انفجار شدیدی خواهد شد.
در واقع ورود نوترون به درون هسته اتم اورانیوم و شكسته شدن آن توام با انتشار انرژی معادل با ۲۰۰ میلیون الكترون ولت است این مقدار انرژی در سطح اتمی بسیار ناچیز ولی در مورد یك گرم از اورانیوم در حدود صدها هزار مگاوات است. كه اگر به صورت زنجیره ای انجام شود، در كمتر از هزارم ثانیه مشابه بمب اتمی عمل خواهد كرد.
اما اگر تعداد شكست ها را در توده اورانیوم و طی زمان محدود كرده به نحوی كه به ازای هر شكست، اتم بعدی شكست حاصل كند شرایط یك نیروگاه اتمی به وجود می آید. به عنوان مثال نیروگاهی كه دارای ۱۰ تن اورانیوم طبیعی است قدرتی معادل با ۱۰۰ مگاوات خواهد داشت و به طور متوسط ۱۰۵ گرم اورانیوم ۲۳۵ در روز در این نیروگاه شكسته می شود و همان طور كه قبلاً گفته شد در اثر جذب نوترون به وسیله ایزوتوپ اورانیوم ۲۳۸ اورانیوم ۲۳۹ به وجود می آمد كه بعد از دو بار انتشار پرتوهای بتا (یا الكترون) به پلوتونیم ۲۳۹ تبدیل می شود كه خود مانند اورانیوم ۲۳۵ شكست پذیر است. در این عمل ۷۰ گرم پلوتونیم حاصل می شود. ولی اگر نیروگاه سورژنراتور باشد و تعداد نوترون های موجود در نیروگاه زیاد باشند مقدار جذب به مراتب بیشتر از این خواهد بودو مقدار پلوتونیم های به وجود آمده از مقدار آنهایی كه شكسته می شوند بیشتر خواهند بود. در چنین حالتی بعد از پیاده كردن میله های سوخت می توان پلوتونیم به وجود آمده را از اورانیوم و فرآورده های شكست را به كمك واكنش های شیمیایی بسیار ساده جدا و به منظور تهیه بمب اتمی ذخیره كرد.
۲ _ نرم كننده ها موادی هستند كه برخورد نوترون های حاصل از شكست با آنها الزامی است و برای كم كردن انرژی این نوترون ها به كار می روند. زیرا احتمال واكنش شكست پی در پی به ازای نوترون های كم انرژی بیشتر می شود. آب سنگین (D2O) یا زغال سنگ (گرافیت) به عنوان نرم كننده نوترون به كار برده می شوند. 
۳ _ میله های مهاركننده: این میله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآكتور اتمی الزامی است و مانع افزایش ناگهانی تعداد نوترون ها در قلب رآكتور می شوند. اگر این میله ها كار اصلی خود را انجام ندهند، در زمانی كمتر از چند هزارم ثانیه قدرت رآكتور چند برابر شده و حالت انفجاری یا دیورژانس رآكتور پیش می آید. این میله ها می توانند از جنس عنصر كادمیم و یا بور باشند.
۴ _ مواد خنك كننده یا انتقال دهنده انرژی حرارتی: این مواد انرژی حاصل از شكست اورانیوم را به خارج از رآكتور انتقال داده و توربین های مولد برق را به حركت در می آورند و پس از خنك شدن مجدداً به داخل رآكتور برمی گردند. البته مواد در مدار بسته و محدودی عمل می كنند و با خارج از محیط رآكتور تماسی ندارند. این مواد می توانند گاز CO2 ، آب، آب سنگین، هلیم گازی و یا سدیم مذاب باشند.

غنی سازی اورانیم
 

سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ ۲۳۵ به مقدار ۷/۰ درصد و اورانیوم ۲۳۸ به مقدار ۳/۹۹ درصد تشكیل شده است. سنگ معدن را ابتدا در اسید حل كرده و بعد از تخلیص فلز، اورانیوم را به صورت تركیب با اتم فلئور (F) و به صورت مولكول اورانیوم هكزا فلوراید UF6 تبدیل می كنند كه به حالت گازی است. سرعت متوسط مولكول های گازی با جرم مولكولی گاز نسبت عكس دارد این پدیده را گراهان در سال ۱۸۶۴ كشف كرد. از این پدیده كه به نام دیفوزیون گازی مشهور است برای غنی سازی اورانیوم استفاده می كنند.در عمل اورانیوم هكزا فلوراید طبیعی گازی شكل را از ستون هایی كه جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور می دهند. منافذ موجود در جسم متخلخل باید قدری بیشتر از شعاع اتمی یعنی در حدود ۵/۲ انگشترم (۰۰۰۰۰۰۰۲۵/۰ سانتیمتر) باشد. ضریب جداسازی متناسب با اختلاف جرم مولكول ها است.روش غنی سازی اورانیوم تقریباً مطابق همین اصولی است كه در اینجا گفته شد. با وجود این می توان به خوبی حدس زد كه پرخرج ترین مرحله تهیه سوخت اتمی همین مرحله غنی سازی ایزوتوپ ها است زیرا از هر هزاران كیلو سنگ معدن اورانیوم ۱۴۰ كیلوگرم اورانیوم طبیعی به دست می آید كه فقط یك كیلوگرم اورانیوم ۲۳۵ خالص در آن وجود دارد. برای تهیه و تغلیظ اورانیوم تا حد ۵ درصد حداقل ۲۰۰۰ برج از اجسام خلل و فرج دار با ابعاد نسبتاً بزرگ و پی درپی لازم است تا نسبت ایزوتوپ ها تا از برخی به برج دیگر به مقدار ۰۱/۰ درصد تغییر پیدا كند. در نهایت موقعی كه نسبت اورانیوم ۲۳۵ به اورانیوم ۲۳۸ به ۵ درصد رسید باید برای تخلیص كامل از سانتریفوژهای بسیار قوی استفاده نمود. برای ساختن نیروگاه اتمی، اورانیوم طبیعی و یا اورانیوم غنی شده بین ۱ تا ۵ درصد كافی است. ولی برای تهیه بمب اتمی حداقل ۵ تا ۶ كیلوگرم اورانیوم ۲۳۵ صددرصد خالص نیاز است. عملا در صنایع نظامی از این روش استفاده نمی شود و بمب های اتمی را از پلوتونیوم ۲۳۹ كه سنتز و تخلیص شیمیایی آن بسیار ساده تر است تهیه می كنند. عنصر اخیر را در نیروگاه های بسیار قوی می سازند كه تعداد نوترون های موجود در آنها از صدها هزار میلیارد نوترون در ثانیه در سانتیمتر مربع تجاوز می كند. عملاً كلیه بمب های اتمی موجود در زراد خانه های جهان از این عنصر درست می شود.روش ساخت این عنصر در داخل نیروگاه های اتمی به صورت زیر است: ایزوتوپ های اورانیوم ۲۳۸ شكست پذیر نیستند ولی جاذب نوترون كم انرژی (نوترون حرارتی هستند. تعدادی از نوترون های حاصل از شكست اورانیوم ۲۳۵ را جذب می كنند و تبدیل به اورانیوم ۲۳۹ می شوند. این ایزوتوپ از اورانیوم بسیار ناپایدار است و در كمتر از ده ساعت تمام اتم های به وجود آمده تخریب می شوند. در درون هسته پایدار اورانیوم ۲۳۹ یكی از نوترون ها خودبه خود به پروتون و یك الكترون تبدیل می شود.بنابراین تعداد پروتون ها یكی اضافه شده و عنصر جدید را كه ۹۳ پروتون دارد نپتونیم می نامند كه این عنصر نیز ناپایدار است و یكی از نوترون های آن خود به خود به پروتون تبدیل می شود و در نتیجه به تعداد پروتون ها یكی اضافه شده و عنصر جدید كه ۹۴ پروتون دارد را پلوتونیم می نامند. این تجربه طی چندین روز انجام می گیرد.
چرخه سوخت هسته ای از استخراج اورانیوم تا تولید انرژی

در باره انرژی هسته ای بیشتر بدانیم





به دلیل حجم زیاد مطالب به ادامه مطلب مراجعه کنبد!


استخراج اورانیوم از معدن
 

اورانیوم که ماده خام اصلی مورد نیاز برای تولید انرژی در برنامه های صلح آمیز یا نظامی هسته ای است، از طریق استخراج از معادن زیرزمینی یا سر باز بدست می آید. اگر چه این عنصر بطور طبیعی در سرتاسر جهان یافت میشود اما تنها حجم کوچکی از آن بصورت متراکم در معادن موجود است.
هنگامی که هسته اتم اورانیوم در یک واکنش زنجیره ای شکافته شود مقداری انرژی آزاد خواهد شد.
برای شکافت هسته اتم اورانیوم، یک نوترون به هسته آن شلیک میشود و در نتیجه این فرایند، اتم مذکور به دو اتم کوچکتر تجزیه شده و تعدادی نوترون جدید نیز آزاد میشود که هرکدام به نوبه خود میتوانند هسته های جدیدی را در یک فرایند زنجیره ای تجزیه کنند.

در باره انرژی هسته ای بیشتر بدانیم

جموع جرم اتمهای کوچکتری که از تجزیه اتم اورانیوم بدست می آید ازز کل جرم اولیه این اتم کمتر است و این بدان معناست که مقداری از جرم اولیه که ظاهرا ناپدید شده در واقع به انرژی تبدیل شده است، و این انرژی با استفاده از رابطه E=MC۲ یعنی رابطه جرم و انرژی که آلبرت اینشتین نخستین بار آنرا کشف کرد قابل محاسبه است.
اورانیوم به صورت دو ایزوتوپ مختلف در طبیعت یافت میشود. یعنی اورانیوم U۲۳۵ یا U۲۳۸ که هر دو دارای تعداد پروتون یکسانی بوده و تنها تفاوتشان در سه نوترون اضافه ای است که در هسته U۲۳۸ وجود دارد. اعداد ۲۳۵ و ۲۳۸ بیانگر مجموع تعداد پروتونها و نوترونها در هسته هر کدام از این دو ایزوتوپ است. 

کشورهای اصلی تولید کننده اورانیوم
 

استرالیا
چین
کانادا
قزاقستان
نامیبیا
نیجر
روسیه
ازبکستان 
برای بدست آوردن بالاترین بازدهی در فرایند زنجیره ای شکافت هسته باید از اورانیوم ۲۳۵ استفاده کرد که هسته آن به سادگی شکافته میشود. هنگامی که این نوع اورانیوم به اتمهای کوچکتر تجزیه میشود علاوه بر آزاد شدن مقداری انرژی حرارتی دو یا سه نوترون جدید نیز رها میشود که در صورت برخورد با اتمهای جدید اورانیوم بازهم انرژی حرارتی بیشتر و نوترونهای جدید آزاد میشود.
اما بدلیل "نیمه عمر" کوتاه اورانیوم ۲۳۵ و فروپاشی سریع آن، این ایزوتوپ در طبیعت بسیار نادر است بطوری که از هر ۱۰۰۰ اتم اورانیوم موجود در طبیعت تنها هفت اتم از نوع U۲۳۵ بوده و مابقی از نوع سنگینتر U۲۳۸ است.
فراوری:
سنگ معدن اورانیوم بعد از استخراج، در آسیابهائی خرد و به گردی نرم تبدیل میشود. گرد بدست آمده سپس در یک فرایند شیمیائی به ماده جامد زرد رنگی تبدیل میشود که به کیک زرد موسوم است. کیک زرد دارای خاصیت رادیو اکتیویته است و ۶۰ تا ۷۰ درصد آنرا اورانیوم تشکیل میدهد. 
دانشمندان هسته ای برای دست یابی هرچه بیشتر به ایزوتوپ نادر U۲۳۵ که در تولید انرژی هسته ای نقشی کلیدی دارد، از روشی موسوم به غنی سازی استفاده می کنند. برای این کار، دانشمندان ابتدا کیک زرد را طی فرایندی شیمیائی به ماده جامدی به نام هگزافلوئورید اورانیوم تبدیل میکنند که بعد از حرارت داده شدن در دمای حدود ۶۴ درجه سانتیگراد به گاز تبدیل میشود.

در باره انرژی هسته ای بیشتر بدانیم

باید این گاز را دور از معرض روغن و مواد چرب کننده دیگر نگهداری کرد.

غنی سازی:
 

هدف از غنی سازی تولید اورانیومی است که دارای درصد بالایی از ایزوتوپ U۲۳۵ باشد. 
اورانیوم مورد استفاده در راکتورهای اتمی باید به حدی غنی شود که حاوی ۲ تا ۳ درصد اورانیوم ۲۳۵ باشد، در حالی که اورانیومی که در ساخت بمب اتمی بکار میرود حداقل باید حاوی ۹۰ درصد اورانیوم ۲۳۵ باشد. 
یکی از روشهای معمول غنی سازی استفاده از دستگاههای سانتریفوژ گاز است.
سانتریفوژ از اتاقکی سیلندری شکل تشکیل شده که با سرعت بسیار زیاد حول محور خود می چرخد. هنگامی که گاز هگزا فلوئورید اورانیوم به داخل این سیلندر دمیده شود نیروی گریز از مرکز ناشی از چرخش آن باعث میشود که مولکولهای سبکتری که حاوی اورانیوم ۲۳۵ است در مرکز سیلندر متمرکز شوند و مولکولهای سنگینتری که حاوی اورانیوم ۲۳۸ هستند در پایین سیلندر انباشته شوند.

در باره انرژی هسته ای بیشتر بدانیم

کیک زرد دارای خاصیت رادیو اکتیویته است و ۶۰ تا ۷۰ درصد آنرا اورانیوم تشکیل میدهد 
هگزافلوئورید اورانیوم که در صنعت با نام ساده هگز شناخته میشود ماده شیمیائی خورنده ایست که باید آنرا با احتیاط نگهداری و جابجا کرد. به همین دلیل پمپها و لوله هائی که برای انتقال این گاز در تاسیسات فراوری اورانیوم بکار میروند باید از آلومینیوم و آلیاژهای نیکل ساخته شوند. همچنین به منظور پیشگیری از هرگونه واکنش شیمیایی برگشت ناپذیر
ورانیوم ۲۳۵ غنی شده ای که از این طریق بدست می آید سپس به داخلاخل سانتریفوژ دیگری دمیده میشود تا درجه خلوص آن باز هم بالاتر رود. این عمل بارها و بارها توسط سانتریفوژهای متعددی که بطور سری به یکدیگر متصل میشوند تکرار میشود تا جایی که اورانیوم ۲۳۵ با درصد خلوص مورد نیاز بدست آید. 
آنچه که پس از جدا سازی اورانیوم ۲۳۵ باقی میماند به نام اورانیوم خالی یا فقیر شده شناخته میشود که اساسا از اورانیوم ۲۳۸ تشکیل یافته است. اورانیوم خالی فلز بسیار سنگینی است که اندکی خاصیت رادیو اکتیویته دارد و از آن برای ساخت گلوله های توپ ضد زره پوش و اجزای برخی جنگ افزار های دیگر از جمله منعکس کننده نوترونی در بمب اتمی استفاده میشود. 
یک شیوه دیگر غنی سازی روشی موسوم به دیفیوژن یا روش انتشاری است. 
دراین روش گاز هگزافلوئورید اورانیوم به داخل ستونهایی که جدار آنها از اجسام متخلخل تشکیل شده دمیده میشود. سوراخهای موجود در جسم متخلخل باید قدری از قطر مولکول هگزافلوئورید اورانیوم بزرگتر باشد.
در نتیجه این کار مولکولهای سبکتر حاوی اورانیوم ۲۳۵ با سرعت بیشتری در این ستونها منتشر شده و تفکیک میشوند. این روش غنی سازی نیز باید مانند روش سانتریفوژ بارها و باره تکرار شود.

راکتور هسته ای:
 

راکتور هسته ای وسیله ایست که در آن فرایند شکافت هسته ای بصورت کنترل شده انجام میگیرد. انرژی حرارتی بدست آمده از این طریق را می توان برای بخار کردن آب و به گردش درآوردن توربین های بخار ژنراتورهای الکتریکی مورد استفاده قرار داد.
اورانیوم غنی شده ، معمولا به صورت قرصهائی که سطح مقطعشان به اندازه یک سکه معمولی و ضخامتشان در حدود دو و نیم سانتیمتر است در راکتورها به مصرف میرسند. این قرصها روی هم قرار داده شده و میله هایی را تشکیل میدهند که به میله سوخت موسوم است. میله های سوخت سپس در بسته های چندتائی دسته بندی شده و تحت فشار و در محیطی عایقبندی شده نگهداری میشوند.
در بسیاری از نیروگاهها برای جلوگیری از گرم شدن بسته های سوخت در داخل راکتور، این بسته ها را داخل آب سرد فرو می برند. در نیروگاههای دیگر برای خنک نگه داشتن هسته راکتور ، یعنی جائی که فرایند شکافت هسته ای در آن رخ میدهد ، از فلز مایع (سدیم) یا گاز دی اکسید کربن استفاده می شود.

در باره انرژی هسته ای بیشتر بدانیم

1- هسته راکتور
2-پمپ خنک کننده
3- میله های سوخت
4- مولد بخار
5- هدایت بخار به داخل توربین مولد برق 
برای تولید انرژی گرمائی از طریق فرایند شکافت هسته ای ، اورانیومی که در هسته راکتور قرار داده میشود باید از جرم بحرانی بیشتر (فوق بحرانی) باشد. یعنی اورانیوم مورد استفاده باید به حدی غنی شده باشد که امکان آغاز یک واکنش زنجیره ای مداوم وجود داشته باشد. 
برای تنظیم و کنترل فرایند شکافت هسته ای در یک راکتور از میله های کنترلی که معمولا از جنس کادمیوم است استفاده میشود. این میله ها با جذب نوترونهای آزاد در داخل راکتور از تسریع واکنشهای زنجیره ای جلوگیری میکند. زیرا با کاهش تعداد نوترونها ، تعداد واکنشهای زنجیره ای نیز کاهش میابد. 
حدودا ۴۰۰ نیروگاه هسته ای در سرتاسر جهان فعال هستند که تقریبا ۱۷ درصد کل برق مصرفی در جهان را تامین میکنند. از جمله کاربردهای دیگر راکتورهای هسته ای، تولید نیروی محرکه لازم برای جابجایی ناوها و زیردریایی های اتمی است.

بازفراوری:
 

برای بازیافت اورانیوم از سوخت هسته ای مصرف شده در راکتور از عملیات شیمیایی موسوم به بازفراوری استفاده میشود. در این عملیات، ابتدا پوسته فلزی میله های سوخت مصرف شده را جدا میسازند و سپس آنها را در داخل اسید نیتریک داغ حل میکنند.

در باره انرژی هسته ای بیشتر بدانیم

در نتیجه این عملیات، ۱% پلوتونیوم ، ۳% مواد زائد به شدت رادیورادیو اکتیو و ۹۶% اورانیوم بدست می آید که دوباره میتوان آنرا در راکتور به مصرف رساند. 
راکتورهای نظامی این کار را بطور بسیار موثرتری انجام میدهند. راکتور و تاسیسات باز فراوری مورد نیاز برای تولید پلوتونیوم را میتوان بطور پنهانی در داخل ساختمانهای معمولی جاسازی کرد. به همین دلیل، تولید پلوتونیوم به این طریق، برای هر کشوری که بخواهد بطور مخفیانه تسلیحات اتمی تولید کند گزینه جذابی خواهد بود.

بمب پلوتونیومی:
 

استفاده از پلوتونیوم به جای اورانیوم در ساخت بمب اتمی مزایای بسیاری دارد. تنها چهار کیلوگرم پلوتونیوم برای ساخت بمب اتمی با قدرت انفجار ۲۰ کیلو تن کافی است. در عین حال با تاسیسات بازفراوری نسبتا کوچکی میتوان چیزی حدود ۱۲ کیلوگرم پلوتونیوم در سال تولید کرد. 

بمب پلوتونیومی
 

در باره انرژی هسته ای بیشتر بدانیم

1- منبع یا مولد نوترونی
2- هسته پلوتونیومی
3- پوسته منعکس کننده (بریلیوم)
4- ماده منفجره پرقدرت
5- چاشنی انفجاری 
کلاهک هسته ای شامل گوی پلوتونیومی است که اطراف آنرا پوسته ای موسوم به منعکس کننده نوترونی فرا گرفته است. این پوسته که معمولا از ترکیب بریلیوم و پلونیوم ساخته میشود، نوترونهای آزادی را که از فرایند شکافت هسته ای به بیرون میگریزند، به داخل این فرایند بازمی تاباند. 
استفاده از منعکس کننده نوترونی عملا جرم بحرانی را کاهش میدهد و باعث میشود که برای ایجاد واکنش زنجیره ای مداوم به پلوتونیوم کمتری نیاز باشد. 
برای کشور یا گروه تروریستی که بخواهد بمب اتمی بسازد، تولید پلوتونیوم با کمک راکتورهای هسته ای غیر نظامی از تهیه اورانیوم غنی شده آسانتر خواهد بود. کارشناسان معتقدند که دانش و فناوری لازم برای طراحی و ساخت یک بمب پلوتونیومی ابتدائی، از دانش و فنآوری که حمله کنندگان با گاز اعصاب به شبکه متروی توکیو در سال ۱۹۹۵ در اختیار داشتند پیشرفته تر نیست. 
چنین بمب پلوتونیومی میتواند با قدرتی معادل ۱۰۰ تن تی ان تی منفجر شود، یعنی ۲۰ مرتبه قویتر از قدرتمندترین بمبگزاری تروریستی که تا کنون در جهان رخ داده است.

بمب اورانیومی:
 

هدف طراحان بمبهای اتمی ایجاد یک جرم فوق بحرانی ( از اورانیوم یا پلوتونیوم) است که بتواند طی یک واکنش زنجیره ای مداوم و کنترل نشده، مقادیر متنابهی انرژی حرارتی آزاد کند. 
یکی از ساده ترین شیوه های ساخت بمب اتمی استفاده از طرحی موسوم به "تفنگی" است که در آن گلوله کوچکی از اورانیوم که از جرم بحرانی کمتر بوده به سمت جرم بزرگتری از اورانیوم شلیک میشود بگونه ای که در اثر برخورد این دو قطعه، جرم کلی فوق بحرانی شده و باعث آغاز واکنش زنجیره ای و انفجار هسته ای میشود. 
کل این فرایند در کسر کوچکی از ثانیه رخ میدهد. 
جهت تولید سوخت مورد نیاز بمب اتمی، هگزا فلوئورید اورانیوم غنی شده را ابتدا به اکسید اورانیوم و سپس به شمش فلزی اورانیوم تبدیل میکنند. انجام این کار از طریق فرایندهای شیمیائی و مهندسی نسبتا ساده ای امکان پذیر است.

در باره انرژی هسته ای بیشتر بدانیم

درت انفجار یک بمب اتمی معمولی حداکثر ۵۰ کیلو تن است، اما با با کمک روش خاصی که متکی بر مهار خصوصیات جوش یا گداز هسته ای است میتوان قدرت بمب را افزایش داد. 
در فرایند گداز هسته ای ، هسته های ایزوتوپهای هیدروژن به یکدیگر جوش خورده و هسته اتم هلیوم را ایجاد میکنند. این فرایند هنگامی رخ میدهد که هسته های اتمهای هیدروژن در معرض گرما و فشار شدید قرار بگیرند. انفجار بمب اتمی گرما و فشار شدید مورد نیاز برای آغاز این فرایند را فراهم میکند. 
طی فرایند گداز هسته ای نوترونهای بیشتری رها میشوند که با تغذیه واکنش زنجیره ای، انفجار شدیدتری را بدنبال می آورند. اینگونه بمبهای اتمی تقویت شده به بمبهای هیدروژنی یا بمبهای اتمی حرارتی موسومند.

غنی سازی اورانیوم
 

سانتریفیوژ دستگاهی است که برای جدا سازی مواد از یکدیگر بر اساس وزن آنها استفاده می شود. این دستگاه مواد را با سرعت زیاد حول یک محور به گردش در می آورد و مواد متناسب با وزنی که دارند از محور فاصله می گیرند. 
در واقع در این روش برای جدا سازی مواد از یکدیگر از شتاب ناشی از نیروی گریز از مرکز استفاده می گردد، کاربرد عمومی این دستگاه برای جداسازی مایع از مایع و یا مایع از جامد است. 
سانتریفیوژ هایی که برای غنی سازی اورانیوم استفاده می شود حالت خاصی دارند که برای گاز تهیه شده اند که به آنها Hyper-Centrifuge گفته می شود. پیش از آنکه دانشمندان از این روش برای غنی سازی اورانیوم استفاده کنند از تکنولوژی خاصی بنام Gaseous Diffusion به معنی پخش و توزیع گازی استفاده می کردند.

در باره انرژی هسته ای بیشتر بدانیم

Gaseous Diffusion
 

در روش Gaseous Diffusion، گاز هگزافلوراید اورانیوم (UF6) را با سرعت از صفحات خاصی که حالت ----- دارند عبور داده می شود و طی آن این صفحات می توانند به دلیل داشتن منافذ و خلل و فرج زیاد تا حدی می توانند اوانیوم 235 را از 238 جدا کنند. (به شکل بالا دقت کنید) 
در این روش با تکرار استفاده از این صفحات ----- مانند، بصورت آبشاری (Cascade)، میزان اورانیوم 235 را به مقدار دلخواه بالا می بردند. این روش اولین راهکارهای صنعتی برای غنی سازی اورانیوم بود که کابرد عملی پیدا کرد. 
Gaseous Diffusion از جمله تکنولوژی هایی بود که ایالات متحده طی جنگ جهانی دوم در پروژه ای بنام منهتن (Manhattan) برای ساخت بمب هسته ای، با کمک انگلیس و کانادا به آن دست پیدا کرد. 
نمونه ای از سانتریفیوژهای گازی آبشاری که برای غنی سازی اورانیوم از آنها استفاده می شود. Hyper-Centrifuge
اما در روش استفاده از سانتریفیوژ برای غنی سازی اورانیوم، تعداد بسیار زیادی از این دستگاهها بصورت سری و موازی بکار می برند تا با کمک آن بتوانند غلظت اورانیوم 235 را افزایش دهند. 
گاز هگزافلوراید اورانیوم (UF6) در داخل سیلندرهای سانتریفیوژ تزریق می شود و با سرعت زیاد به گردش در آورده می گردد. گردش سریع سیلندر، نیروی گریز از مرکز بسیار قوی ای تولید می کند و طی آن مولکولهای سنگین تر (آنهایی که شامل ایزوتوپ اورانیوم 238 هستند) از مرکز محور گردش دور تر می گردند و برعکس آنها که مولکول های سبک تری دارند (حاوی ایزوتوپ اورانیوم 235) بیشتر حول محور سانتریفیوژ قرار می گیرند. 
در این هنگام با استفاده از روشهای خاص گازی که حول محور جمع شده است جمع آوری شده به مرحله دیگر یعنی دستگاه سانتریفیوژ بعدی هدایت می گردد. میزان گاز هگزافلوراید اورانیوم شامل اورانیوم 235 ای که در این روش از یک واحد جداسازی بدست می آید به مراتب بیشتر از مقداری است که در روش قبلی (Gaseous Diffusion) بدست می آید، به همین علت است که امروزه در بیشتر نقاط جهان برای غنی سازی اورانیوم از این روش استفاده می کنند. 
بزرگترین دستگاههای آبشاری سانتریفیوژ در کشورهایی مانند فرانسه، آلمان، انگلستان و چین در حال غنی سازی اورانیوم هستد. این کشورها علاوه بر مصرف داخلی به صادرات اورانیوم غنی شده نیز می پردازند. کشور ژاپن هم دارای دستگاههای بزرگ سانتریفیوژ است اما تنها برای مصرف داخلی اورانیوم غنی شده تولید می کند.

بمب هاى هسته اى
 

•چرا اورانیوم و پلوتونیوم؟
 

ایزوتوپ معمول اورانیوم (اورانیوم ۲۳۸) براى ساخت سلاح اتمى مناسب نیست. چرا كه با شلیك نوترونى به هسته این ایزوتوپ، احتمال به دام افتادن نوترون و تشكیل اورانیوم ۲۳۹ از احتمال شكافت هسته اى بسیار بیشتر است. درحالى كه در اورانیوم ۲۳۵ امكان شكافت هسته اى بیشتر است. اما فقط ۷/۰ درصد اورانیوم موجود در طبیعت، ایزوتوپ ۲۳۵ است. به همین خاطر براى تهیه مقدار مورد نیاز اورانیوم ۲۳۵ براى ساخت بمب، به مقدار زیادى از اورانیوم طبیعى نیاز است. در عین حال ایزوتوپ هاى ۲۳۵ و ۲۳۹ اورانیوم به روش هاى شیمیایى قابل جداسازى نیستند؛ چرا كه از لحاظ شیمیایى یكسانند. بنابراین دانشمندان پروژه منهتن قبل از ساختن بمب باید مسئله دیگرى را حل مى كردند؛ جداسازى ایزوتوپ هاى اورانیوم به روش هاى غیرشیمیایى. پژوهش ها همچنین نشان مى داد كه پلوتونیوم ۲۳۹ قابلیت شكافت هسته اى بالایى دارد. گرچه پلوتونیوم ۲۳۹ یك عنصر طبیعى نیست و باید ساخته شود. رآكتورهاى هنفورد در واشینگتن به همین منظور ساخته شده اند.

در باره انرژی هسته ای بیشتر بدانیم

• «پسربچه»:(Little boy) یك بمب شلیكى
 

طرح «پسربچه» شامل تفنگى است كه توده اى از اورانیوم ۲۳۵ را به سمت توده دیگرى از این ایزوتوپ شلیك مى كند. به این ترتیب یك جرم فوق بحرانى تولید مى شود. نكته اساسى كه حتماً باید رعایت شود این است كه این توده ها باید در زمانى كوتاه تر از حدفاصل بین شكافت هاى خود به خودى در كنار هم نگه داشته شوند. به محض اینكه دو توده اورانیوم در كنار هم قرار گرفتند، ناگهان چاشنى توده اى از نوترون ها را تولید مى كند و زنجیره واكنش ها آغاز مى شود. با ادامه این زنجیره، انرژى مدام افزایش مى یابد تا بمب به سادگى و خودبه خود منفجر شود.

در باره انرژی هسته ای بیشتر بدانیم

1- در دنباله پلیسه بردارى
۲- مخروط دم
۳- لوله هاى ورود هوا
۴- چاشنى فشار هوا
۵- محفظه پوشش محافظ سربى
۶- بازوى چاشنى
۷- سرانفجارى
۸- چاشنى انفجارى معمول
۹- اورانیوم ۲۳۵ (گلوله)
۱۰- سیلندر توپ
۱۱- اورانیوم ۲۳۵ (هدف) با مخزن
(منعكس كننده نوترون درست این بالا است)
۱۲- میله هاى كنترل فاصله
۱۳- فیوزها

در باره انرژی هسته ای بیشتر بدانیم

• «مرد چاق»(Fat man) : بمب انفجار درونى
 

شكافت خودبه خودى پلوتونیوم ۲۳۹ آنقدر سریع است كه بمب تفنگى (پسربچه) نمى تواند دو توده پلوتونیوم را در زمانى كوتاه تر از حد فاصل شكافت ها كنار هم نگه دارد. بنابراین براى پلوتونیوم باید نوع دیگرى از بمب طراحى شود. قبل از سواركردن بمب، چند نوترون سرگردان رها مى شوند تا زنجیره واكنش پیش رس را آغاز كنند. این زنجیره موجب كاهش عظیم انرژى منتشر شده مى شود. «ست ندرمى یر» (دانشمندى از لس آلاموس) ایده استفاده از چاشنى هاى انفجارى را براى كمپرس بسیار سریع كره پلوتونیوم مطرح كرد و بسط داد. با این روش كره پلوتونیوم به چگالى مناسب بحرانى مى رسد و انفجار هسته اى رخ مى دهد.

در باره انرژی هسته ای بیشتر بدانیم

1- :AN 219 فیوز تخریب
۲- :Archie آنتن رادار
۳- صفحه باترى ها
۴- واحد :Xسیستم جرقه زن كنار چاشنى
۵- لولا براى ثابت نگه داشتن دو بخش بیفوى بمب
۶- لنز پنج ضلعى با قابلیت انفجار بالا
۷- لنز شش ضلعى با قابلیت انفجار زیاد
۸- چتر نجات كالیفرنیا دنباله (آلومینیوم)
۹- حفاظ دور، قطر داخلى cm ۱۴۰
۱۰- مخروط هایى كه كل كره را در بر مى گیرند
۱۱- لنزهاى انفجارى
۱۲- ماده هسته اى
۱۳- صفحه رادارها، سوئیچ هاى هوا و تایمرها
۱۴- جمع كننده لوله هوا 

• بمب انفجار داخلى: بمب كثیف
 

انفجار درونى كه در واقع عكس انفجار بیرونى است ماده و انرژى را چگال و متمركز مى كند. ویرانى ساختمان بر اثر انفجار بیرونى باعث مى شود كه ساختمان روى خودش آوار شود. اصطلاحاً گفته مى شود كه «ساختمان از درون منفجر شده است.» انفجار درونى، آوار شدن از داخل است. درست مقابل انفجار بیرونى، یك كره توخالى پلوتونیوم مى تواند با چاشنى كروى انفجارى خارجى، از درون منفجر شده و به عنوان ماشه یك بمب شكافت هسته اى به كار رود. این بمب هم به نوبه خود مى تواند یك ماشه انفجار داخلى براى یك جور هم جوشى باشد. در بحث كاویتاسیون انفجار درونى یك فرآیند مكثى است كه ذرات را مجبور به حركت به سمت داخل مى كند (نه حركت به سمت خارج كه مربوط به انفجار بیرونى است) این حركت مركزگراى درونى، از یك مسیر مستقیم به سمت مركز (مسیر شعاعى) پیروى نمى كند، بلكه با چرخش روى یك مسیر مارپیچى حركتش را انجام مى دهد. این حركت چرخشى ورتكس نام دارد. در كاویتاسیون به خاطر فشار كم، حباب هاى كوچكى از بخار آب در یك سمت پروانه تشكیل مى شود. با تخریب این حباب ها، موج هاى ناگهانى محلى شدیدى به وجود مى آید كه سر و صدا تولید مى كند و منجر به شكست محلى در سطح پروانه مى شود. ادامه این روند سایش ماده را به دنبال دارد. مشخصه اصلى ورتكس این است كه خارج آن كند و مركز آن تند حركت مى كند. در ورتكس، آب «از درون منفجر مى شود» ذرات معلقى كه از آب سنگین ترند به مركز جریان كشیده مى شوند، مقاومت اصطكاكى كاهش مى یابد و سرعت جریان زیاد مى شود.

در باره انرژی هسته ای بیشتر بدانیم

مراحل انفجار داخلى
 

۱ ماده منفجر ه اى كه ماده شكافت پذیر را در برگرفته است، مشتعل مى شود. ۲ یك موج ناگهانى تراكمى به سمت داخل شروع به حركت مى كند. سرعت این موج ناگهانى از سرعت صوت بیشتر است و سبب افزایش قابل توجه شار مى رود. موج در یك لحظه به تمام نقاط روى سطح كروى ماده شكافت پذیر در هسته بمب حمله مى كند، فرآیند تراكم آغاز مى شود. ۳ با افزایش چگالى هسته، جرم به حالت بحرانى و سپس فوق بحرانى مى رود كه در آن زنجیره واكنش ها به صورت نهایى زیاد مى شود. ۴ اكنون پخش شدن چاشنى به رها شدن نوترون هاى زیاد منجر مى شود. به همین دلیل خیلى از تولیدات اولیه باى پس مى شوند.۵ زنجیره واكنش ها همچنان ادامه مى یابد. تا زمانى كه انرژى تولید شده در درون بمب به قدرى بزرگ شود كه فشار درونى (ناشى از انرژى شكافت) به مقدارى بیش از فشار انفجار داخلى و ناشى از موج ناگهانى برسد.۶ با از هم جدا كردن بمب، انرژى منتشر شده در فرآیند شكافت، به اطراف انتقال مى یابد.

در باره انرژی هسته ای بیشتر بدانیم

•بمب هیدروژنى
 

بازده هیدروژنى به وسیله مقدار لیتیوم دوتراید (deuteride) و نیز مواد شكافت پذیر اضافه كنترل مى شود. براى تامین نوترون هاى اضافه فرآیند هم جوشى (fusion) معمولاً اورانیوم ۲۳۸ در بخش هاى مختلف بمب به كار مى رود. این ماده شكافت پذیر اضافه (اورانیوم ۲۳۸) در عین حال تشعشعات اتمى باكیفیت بالا نیز تولید مى كند.

در باره انرژی هسته ای بیشتر بدانیم

بمب نوترونى
 

بمب نوترونى یك بمب هیدروژنى است. بمب نوترونى به كلى با سایر سلاح هاى اتمى استاندارد تفاوت دارد. چرا كه اثرهاى مهلك بمب كه از تشعشعات مضر مى آید، به خاطر نوترون هایى است كه خودش رها مى كند. این بمب همچنین به نام «سلاح تشعشع افزوده» (enhanced- radiation weapon) شناخته مى شود.اثرات تشعشع افزوده در بمب نوترونى بدین صورت است كه آثار حرارتى و تخریبى این بمب نسبت به سایر سلاح هاى اتمى كمتر است. به همین دلیل ساختارهاى فیزیكى مثل ساختمان ها و مراكز صنعتى كمتر خسارت مى بینند و بمب بیشترین آسیب را به انسان وارد مى كند. از آنجا كه اثرات تشعشع نوترون با افزایش فاصله به شدت كاهش مى یابد اثر بمب در مناطق نزدیك به آن و مراكز دور از آن به وضوح تفاوت دارد. این ویژگى كاملاً مطلوب كشورهاى عضو پیمان آتلانتیك شمالى (ناتو) است، چرا كه آنها مى خواهند آمادگى نبرد در مناطق پرازدحام را داشته باشند درحالى كه انواع دیگر انفجارهاى هسته اى، زندگى شهرى و دارایى ها را به خطر مى اندازند بمب نوترونى فقط با زنده ها سر و كار دارد.

ارسال نظر برای این مطلب

کد امنیتی رفرش
درباره ما
Profile Pic
این سایت جهت مطالب علوم تجربی ساخته شده است امیدوارم خوشتان بیاید.
اطلاعات کاربری
  • فراموشی رمز عبور؟
  • آرشیو
    نظرسنجی
    ازچه مطالبي خوشتون مياد؟
    آمار سایت
  • کل مطالب : 158
  • کل نظرات : 21
  • افراد آنلاین : 2
  • تعداد اعضا : 0
  • آی پی امروز : 52
  • آی پی دیروز : 24
  • بازدید امروز : 55
  • باردید دیروز : 31
  • گوگل امروز : 0
  • گوگل دیروز : 1
  • بازدید هفته : 152
  • بازدید ماه : 133
  • بازدید سال : 2,970
  • بازدید کلی : 63,169
  • کدهای اختصاصی